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ABST RACT

An expansion of a formally rigorous integral solution of the

Boltzmann equation in powers of the electric field and m '-is used to

demonstrate clearly the correct expression for the conductivity of a

spatially homogeneous slightly ionized gas. The conditions under which

the isotropic part of the electron distribution function reduces to the

Margenau distribution are determined. A discussion of the physical

ireasons for the possibility of negative conductivity is given..



I. INTRODUCTION

The theories of the interaction of slightly ionized gases

with electromagnetic fields as developed by many authors 1 ' 2, 3, 4, 5, 6

are usually based on a modified Lorentz gas 7 approximation. That is,

electron-electron collisions as well as ion-ion collisions are ignored,

and the recoil of the neutral molecules is taken into account to first

order only. In addition the Boltzmann equation is expanded in Legendre

polynomials in velocity space. The latter procedure leads to an infinite

set nf coupled differential equations for the expansion cocfflcicnts which

is truncated, usually by setting all but the first two coefficients equal

to zero. This procedure leads to the following expression for the cur-

rent density:

j 4.wre " . 3 Ifo(v)dvS(x) v (1)

in which (-e) is the charge of an electron and fo(v) is the Isotropic part

of the electron distribution function. For an electric field of the form

(t) =rcoswt)



the quantity < ;> is given by the equation

< > -vcosuOt + wsina0t (3)
m(v2 + (02

where v is the electron collision frequency (normally a function of

velocity).

In a later paper,8 Margenau has shown that equation (1) is

valid for more general conditions than initially had been demonstrated.

It was then pointed out 9 that equation (1) does not in itself guarantee the

positive definiteness of the electric conductivity, and that, in fact, sub-

stitution of a 8-function in the magnitude of the electron velocity for fo(V)

and the experimental collision frequency in air for v , yields a negative

value for the conductivity. The following, alternate formula for the current

density was proposed:
9

. = -41ef c> V 2 o(v)dv. (4)

In order to obtain this formula, which guarantees positive

conductivities, the philosophy was adopted that the only effect of the electric

field (which we take in the x direction for definiteness) is to shift the

"equilibrium distribution", fo(v) In the following fashion:

2



f(v x , v y I v 7 , t) = f (V - g , V y v ) (1 - 8_. _) (5)
a vx

where f(v, t) is the new distribution function, g is the velocity shift of

an average electron, and the factor (1 - accounts for the fact
I vX

that the volume element in the "shifted" region differs from the unshifted

volume element. g was shown to be equal to <k> as given by equation (3).

When the current density is calculated using a distribution

function of the form given by equation (5) and is subsequently expanded

in powers of e k > , the lowest order non-vanishing result is given by

equation (4).

10Taylor has recently computed the average shift of the electron

velocity b-i what is essentially a random walk technique. His result agrees

with equation (3). Subsequently he uses equation (5) for the calculation

of the current density to all orders in < > • and, as a special case, ob-

tains equation (4) to first order in x> , Taylor's calculation of 4x ,
however, to correct only if the collision frequency is independent of velo-

city, because he neglects to take into account certain retardation effects,

which we shall have occasion to discuss later on in this paper (equation(l5) ).

In Section II of this paper we expand a formally rigorous solu-

tion of the Boltzmann equation for a modified Lorentz gas in powers of

the electric field and in powers of the ratio of the electron mass to the

mass of the molecule. The function fe(v, t) is precisely defined and the

3
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conditions under which it reduces to the steady state Margenau distri-

bution6 are determined. In Section III the current density is computed

and shown to be given by equation (1) to first order in the electric field.

The physical reasons for the possibility of negative conductivities are

discussed.

4



II. THE ELECTRON DISTRIBUTION FUNCTION

The Boltzmann equation for a modified Lorentz gas which

is homogeneous in space and on which is imposed an electric field of the

form given by equation (2) is

8f• t) a flv t)at + Ycoswt -v (v)f(v, t) + S(v, t) (6)a t Ovx -- _

where Y= -se E and S(v, t) is a source term. The collision frequencym

v(v) describes all types of collisions - elastic, inelastic, ionizing colli-

sions, absorption, etc. S(v, t) is the rate at which the number of electrons

in the velocity range v, v + dv is added due to elastic collisions as well

as due to all other processes. In general S(v, t) depends on the form of

f(v, t).

To obtain a formal solution of equation (6) we first make

the following transformation:

-v ..Y sinwt CVx WlmlDV

(7)
and t - t.

.Let F(c, Vy, V t) f Vy, vz, t), then the equation becomes



OF(c, v., v., t)

ot + V(c +--sinowt, vy, vz)F(c, vy, vz, t) S(c +- -- inwt, v z).
(8)

The solution of this equation is:

F(c, Vy, v 0, t)= S(c +"'- sin tV, vy, Vz, t) exp -fi(c +----sin t", v z v)dt"] t'
10 ti

(9)
+Flc, vy, vz, to)exp [fv(c +-Y-sin t', vy, Vz)dt'•

t
0

or, after transformation to the original variables:

f(vx, Vy, vz, t) f S(vx- (t, t'), vy, vZ, t) exp [" f V(v. - -! (t' t"), vy, vz)dt"idt,

to ti ((10

(10)

+exp ' V(vx - c(t, t'), Vy, vz, t)dtij f(VX - i(t, to), vy, vz, to)
to

where the notation

x(ti) [t) sin.at - sinot (1)

has been introduced, and where to is some initial time at which f is

specified. Equation (10) is, of course, not a solution of the problem since

S(v, t) is itself related to f(XI t). It is merely an integral form of equation

(6) and is completely equivalent to it. Equation (10) does, however provide



0

a convenient starting point for a systematic computation of the distribu-

tion function as a series in powers of Y.

Consider the case where t = -a . Because of the posi-

tive definiteness of the collision frequency, v, the second term on the

right had side vanishes for all t > - , leading to the equation

t t

f(vx, v, VzO t) fS(V x- ý(t, t'), v yv, VZ t') exp{-fV[Vx- (t, t"), vy, vz]dt'jdt'
-0 tI (12)

We digress temporarily to discuss certain aspects of Taylor's 1 0

paper. Assume that the molecules are infinitely heavy and that the scat-

tering cross section is isotropic. In this case

f d3~

(13)

v(v) fo (v, t) = SO(V, t)

where fQ(v, t) and So(v, t) are defined by the equations

fl(V, t) -- - fly, tldf ; SfV, t) S(v, t)df (14)

Here N is the number of molecules per unit volume and u(v--.vX)d1)

is the differential scattering cross section. The final form of equation (13)

results because in this particular case v= v and a in a function of the

7



velocity magnitude alone. We now multiply equation (12) by vx, integrate

over all velocities and divide by the electron density n to obtain the average

electron velocity. After substitution for S(v, t) from equation (13), we

obtain

x O f XX y zP 0X

t

<V> = I-f. VxlVx- X(t, t"), vy, vzdt"} dt' d'v.
ti

For the special case of velocity independent collision frequency and time

independent fo, equation (15) reduces to

t
<vx> =f (t, t'- V V (t -tf)dt,

which upon slight change in notation reduces to equation (5) of Taylor's

paper, and the current density is a linear function of the electric field

regardless of the strengthof the field. In general, as can be seen, a

velocity dependence of v implies a complicated time dependence of v

in integrals such as (16). If equation (15) is expanded in powers of Y

(again, with isotropic, time independent fo) <vx > is not given by equa-

tion (16) but contains an additional term of the same order, which is pro-

portional to - , and higher order terms in Y. This equation is
* vx

therefore not adequate for the calculation of the conductivity even to lowest

* 8



0|

order non-vanishing terms in I, much less for the computation of

higher order terms as Taylor has done.

We now return to the computation of the distribution function.

We expand equation (12) in powers of 7 to obtain

t

+ aZt t') 2 a 2y , t') ( 2 t Vx

+ -I'-- I S(v, t) - 3  S(v, t) (17)

2a 1 (t, t)a 2 (t, t) *V *S(v t) " a 2 S(v, t') +.

&V av S~v't + a 2(t, t') 0 2V eVx eVx 0x v2 "'

where V = (v) and

ta1t t) AL= (t, t aZ W__ V (t, t dt"
VVal~ti

tt (18)
V t"

a~ ~ • " 2I, tl~dt

We now integrate both sides of equation (17) over solid angle in velocity

space, and obtain, under the assumption that S(v, t) is isotropic, the

following equation:

9



f t) eV)t td (S 0(v. t') + S { S0 (v, t'V [a t' (t, t d 2

a 3 (tI t') / 2 dv d 2v _ 2 dv *So(v, t2)
V •"dv v I) ""- 2it t'a(t' t )d- &v

+ a, 2 (t, t~)4 _L_ + S (v, 0t +0(7 4)
a v OV (19)

Then we differentiate equation (19) and get:

efo(V, t) l2f e t
- - % t)S(V,0+ " -V (t- t')dt,et 0f(V t) 6 =oV to

2 2~dv *#t{ [(v dt )2 ,az(t, t' 2 dv +d v #a3(t, t')

dv It V dv dv It

2 dV vS°(v' t') !t a l(t,+t ')a (t ) + + 92 ) "c, t")

0a(t dv*tt 1 tt) 2 t ') y jZ

l ae t , t' + O ( yt4) .(20)

With the exception of a slight digression to a discussion of more general

conditions following equation (49) in Section III, we shall restrict our-

selves to the case where elastic scattering of electrons by neutral mole-

cules is the only contribution to the source term for the remainder of this

paper. Also, with the exception of the appendix, we consider only the

case where the differential scattering cross section is isotropic in the

10



center of mass system. Note that for infinitely heavy molecules, these

assumptions imply that S(v, t) has the isotropic value given by equa-

tion (13). Substitution from this relationship into equation (20) shows

that is small of order 72.
at

We now examine the corrections to equation (13) which

arise when recoil is taken into account to first order.

Let q(v', 9) do be the differential cross section in the

laboratory system for scattering electrons through an angle 9 into the

velocity range v, v + dv. We assume that the temperature of the neutral

molecules is low enough so that their velocity before the collision can

be ignored; thus y' is the velocity of the electron before the collision

and 9 is the scattering angle in the laboratory frame of reference. As

a consequence of the invariance of the differential scattering cross

section to a transformation to the center of mass system we have

@(v', 9)do = a(g, Gc)doc (21)

in which the subscript "c" refers to center of mass system and g is

the magnitude of the relative velocity. Using the relations resulting

from conservation of energy and momentum and the fact that the velocity

of the molecule before collision is taken as zero, we get the equation

11
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CoB Oc coso + o (Cos (), (22)
M M

where m and M are the electron and molecule masses, respectively.

The azimuthal angle is invariant to the transformation. Thus

d(cos Bc)
O(v', O) = a(g, 0c) C = (I + 2-M CosG) a(v (23)

C c d(cos 9) M C C

where we used the relation v' = g in the last expression. In general,

assuming ac(g, 9c) is known, one would also use equation (22) to substi-

tute for 0c. In the case considered here the cross section is isotropic
Ca

in the center of mass system. Thus

V(v', 9) =(l2 + cos0) a (v) + o(M) 2  (24)
M C M

Following Morse, Allis, and Lamar , we got the following form for the

source function:

S(v, t) .- N f0 f(v' t) 4v,) o(v', 9)dfl (25)

where N is the number of molecules per unit volume. In the integration

of equation (25) over solid angle X rather than v' is held constant. Thus

one must express v' in terms of v and S. The required relation is

12



easily obtained by using the equations expressing conservation of momen-

tum and energy. The result is

v. =v +I --- cos 0)] + 0(m)2 (26)M

We now split the distribution function into isotropic and non-isotropic

parts,

f(v, t) = fo(V, t) + fl(v, t) (27)

and Initially make no assumptions as to the relative size of the two parts.

Using equations (24), (26) and (27) in equation (25) and expanding the re-

sult in powers of m/M we obtain

S(v, t)0 v(V)f (V, t) + m j [ v3V(v)fo(v, t)]
-- Mv2  

*vL

(28)

+ - M v(v)f I(V t) - .m --0[Vv(V)fl(v, t)] 0(

MV v- M

where

"f"(vt) J f(vl', t)cosedn , V(v) NJ vo(v, 0 )dfl 41'Nv c(V) +O( m_)2
Y (V' 0

(29)

13



Consider the integral expression for fI. It can be written as

f= f(II, t) vdQ

and, since v t = v + 0(--- ) one can write
M

f f f(v', t)v' 8(v' - v) d 3 v, + 0(-

Clearly f1 l(v, t) is an udcld function of the components of v to order -- , and isM

hence, in this approximation, purely anisotropic, that is

fld =O(---) m (30)

When S(v, t), as given by equation (28) is substituted on the right hand

side of equation (17) it is seen that f(v, t) is isotropic if terms of order

Y and higher order terms are neglected. That is fl(v, t) is of order V.

By making use of this fact we can rewrite equation (28) as follows.

S(v, t) r V(v)f (v, t) + -Y" [v V(v)fo(V, t)]
Mvz V

(31)

+ O(--M-)- + purely anisotropic terms of order I.-.-M
M M

14



We can thus see that when the center of mass differential scattering cross

m
section is isotropic, the source term is isotropic through order

M

In the derivation of equation (19) and (20) we have assumed that

the source is isotropic. By substituting S(v, t) as given by equation (31)

into equation (17) and repeating the ensuing calculation, (without the explicit

assumption that S(v, t) is purely isotropic), we see that equations (19) and

(20) are still satisfied if terms of order V r and higher order termsM

are neglected. In particular equation (20) takes on the following form:

*fe(v, t)_ m a v3Vf(V, e-(t-t')

a t - v2 ev I jf0(,0 6W2 ý. e t
Mv 6w w

_L_) 7-• _j a2(t, tl)-2aa(t, a2t '

(32)

V dv 3J

+ 2 dv *o v, t') A [a 2(t, t'-a(t, ta 2 (t, t')l

V dv dv + t2( d v, t!)
+ [ '+ - )"f(V, t)]' +o(-V 2 .. ) +o(Y 4

Equation (32) implies that fe(v, t) is a rather weak function of

time -IT-- is of order m or V2, whichever is larger). This fact,
&t TM

together with the fact that the presence of the exponential ' V(- t) sup-

presses contributions with t' < t in the integral dn the right hand side

15



of equation (32). suggests that we can substitute fe(v, t) for fe(V, t') under

this integral. When the indicated integration is performed it turns out that

the part in the braces contributes nothing. The result is

*fe(v, t) m r30 f t)l

It Mv 2  Lv 0

S22
+ Z~-[At)(----~~--~~-) ~v t +2A 2 (t) dV If (v, t)

6 2 V v V dv *V

(33)

+ O( Y 2 --) + 0 ( Y 4 .

Herc

Al(t) ' 'V (t t') dt' _8a 1 2(t.t') 2 2j 2 (cos2ot + w-2sintot cosert)
-wV 240(a

and

t

A 2 (t) f e'V(t-t')dt- . [a 1
2 (t, t')-a (t, tu2, t,)]

(34)

222 [ ((2 V 2 )cos 2 cat - 2wvsinctcoswt]

where at(t, t') and a 2 (t, t') are given by equations (11) and (18). Substituting

the values given by equation (34) into equation (33) and rearranging the

16



term proportional to Y 2 we get

*f 0 (v, t) mv3Vf(V t)]
at M2 #,V IVIVf0(0

Mv (35)

a (Cos 2 Wt + W-sinaL cosawt) V % fo(V . t) +
3v 2 ev W2 + v M

By making use of the weak time dependence of f (v, t), we can integrate

over a period of the electric field holding f (v, t) constant. Furthermore,

if we add to the term proportional to m/M the well-known correction due

to the thermal motion of the molecules:' 5, 6 we get the steady state result

y d v V dfo(v) m d Vf(v) + dfo(v)

6 dv 2 dv M Mdv my dv

(36)

which upon Integration leads to the Margenau distribution function6

f- V
fo(V, t) = fo(V) = Cexp - mvdv (37)

0 kT+ Y M/6(a +V

in which C is a nurmalization constant.

Once again we make use of the result that the time dependence of

f0 (v, t) is insignificant and integrate equation (33) over time, holding fo(V, t)

fixed on the right hand side. The result can be used to express fo(V, t')

in terms of fo(v, t).

17



f 0 vt')-- fo(v, t) +(t' -t) .. I.... O lv3vfo(V, t)1•

re] ( 2--v,.£ v

viz 4 1 4 lv)

v(38)

Now, by using this equation together with equation (31) we obtain

Q~vt') V)f,(v, t)+ W ~( t') -s- v~ iv fo(v. t)] 2 v

Mv 2

(39)

where the curly brackets are meant to contain the same quantity as they

do in equation (38). We substitute the r. h. s. of equation (39) for S(v, t')

in the zeroth order term of equation (17), while the value V fe(v, t) is used

for S(v, t') in the higher order terms. The term proportional to m/M and

the terms proportional to / V1v, a V/ va v) 2 , or ( 02 V /a VX2 ) times

fe(v, t) drop out in the integration over t and we get

f(v, o t) fo(v, t) - - .b(t) v *f (v, t
V a v

+_ Y 2 v Bl(t) V + 0,v f ( oV,

(40)
2B 2 (t) dV &fo (v, t) - n3

+dv aV +0( Y M 0( )

18



0

where

Vt r to)
b(t) e• e (t-t) vdt'a (t, t') cos t + weinwt

-f V2 + W2

Bl(t) ft e'V(tot')Vdt' a 2 (t, t') "0 + .3.VinZt.+.(v2 -2e?)cos2cat]
- (V2 + W02 (V2 + 4(a2 J

and (41)

t1B2(t) =-t. e (t -to) vdt' I a,2(to t 1)'-aI(t, to) a2(t, t')]

o,2 [ _i V2 6.j - 4V3 )sin.t + (5e 2 y 2 _ V)cos2tot
2lv + 21 2 + 2 a+

2(V + 0 + ( (W + v ) (Z +4(0)

In obtaining equation (40) we made use of the fact that Bl(t) and B 2 (t) can

be expressed as follows:

t t t t
e'(t -f (t-to)vt A1 A(t't)dtII B M 3 2( f e'V (t-t') Vito [f A t)"

-w ti -0 to

(42)

We see that our solution for the electron distribution written as an expansion

in powers of the electric field turns out also to be an expansion in Legendre

polynormiials in the cosine of the angle between v and the electric fiel4 to

the order for which we have determined the coefficients of the expansion.

In the conventional treatment the distribution function is expanded in spherical

harmonics at the outset and the assumption is made that the contributions

19



proportional to Legendre polynomials of second order and higher are

negligible. The justification for this assumption being that when it is made

the series appears to converge rapidly on the basis of the two or three

terms which are computed.

Although our method is lengthy, it seems to us to be more satis-

factory because we have shown that the contributions not explicitly given in

equation (40) are indeed of higher order in terms of certain expansion para-

meters ( J and m/M) than those retained. Furthermore, we have explicitly

demonstrated that the oscillating portion is indeed small.

20
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III. ELECTRICAL CONDUCTIVITY

If we substitute the result given by equation (40) into the expres-

sion for the current density,

j~ = t fef(v t)d 3v, (43)

we obtain a result in agreement with equations (1) and (3)

4 e 4 wosin•at 3 Ofo(v, t)dv -3V---)

4 2nf+ 0(y m +o()y•- 3 In 0 + 2 + &v

(44)

Thus for elastic scattering which is isotropic in the center of mass system

we have proven that equation (1) rather than equation (4) is the correct

expression for the current density; however, equation (1) is valid for much

more general conditions. In fact it is valid to lowest order in powers of Y

when the source S(v, t) is due to any processes provided that the lowest

order anisotropy in S(v, t) is of order If or higher and that the time dependence

of S(v, t) is of order Y or higher. From equation (19) we see that the latter

condition implies that the purely isotropic part of S(v, t) is equal to Vfo(v, t)

plus terms of order Y or higher. Thus the lowest order contribution to

equation (43) for the conductivity results from substitution of -if 0 (v, t) for

S(v, t') in the term proportional to Y in equation (17) for f(v, t). As noted

in obtaining equation (40), the terms proportional to 0 v/* vx drop out in



the integration over t' and with the aid of the first of equations (41) one ob-

tains equation (44) with corrections of order Y 2 or higher for the current

density.

In order to demonstrate clearly the velocity dependence of fo

and v required for negative conductivity, we integrate equation (44) by

parts, obtaining

±r e2  (Vco08t + ws~inwit)3~~~~~~ IV __ _ _ _ _)_ _ 1
- 3 M 2 A+ V2  0 0'

f "T -tmdv f(V,.tdv r v 3 ( Vcoso)t + wbsinO)L),

3 mdv 7 V 2 + W2

For any finite w the first term must vanish in order that the energy density

of the electrons be finite. We take the scalar product of j with the electric

field, average over a period of the field, and obtain the average power given

by the field to the electrons

4w 2 afv~v 3v 2 V + NW2 ) i
15 = 4-3 ym. _(v t)dv { (V + 2) d-I-

3  2 2 2 22 dv
o 2(I Z) 2( V +0)

(43)

In the vicinity of a particular speed vI we approximate the collision fre-

quency by .V(v 1 ) = avIn. Then it is apparent that for w>>y (vl) electrons

of speed v, lose energy to the field (in phase part of the conductivity nega-

tive) if n < - 3, while for w0<< i (v1 ) they lose energy to the field if n > 3.

Thus if the distribution function is sharply peaked about the speed v, for

22



which ID(v 1) satisfies either of these conditions, the total power gained by

the electrons from the field is negative.

It is possible to give a rough, qualitative, explanation of this

negative conductivity phenomenon. In the case where o>>) and p de-

creases with velocity, the electron oscillates about its initial velocity many

times between collisions, and the probability that it will undergo a collision

during the portion of the cycle during which its speed is below its initial

speed is higher than the probability that it will collide during the portion of

cycle when its speed is above its initial speed. It will thus on the average

lose energy to the field. In the case where w4<V and 9 increases with

velocity it is easiest to think of the situation as approximating the D.C.

Case. After a collision an electron may move either with or against the

field (with equal probability for isotropic scattering). Since the collision

frequency increases with speed, the electrons which are being decelerated

will collide later, on the average, than those that are being accelerated.

Thus electrons spend more time giving energy up to the field than gaining

energy from it.

Since we integrated from -a to t in obtaining equations (40) and

(44) one might expect our equation (44) to be valid only when fo(v, t) is

equal to the steady state distribution (the Margenau Distribution) given by

equation (37). When this distribution function is used in equation (44)

positive values result for the conductivity, regardless of the velocity dependence

of V. Actually, if initially the electrons have some strange, non-isotropic,

23



distribution, equations (40) and (44) become applicable after a time equal

to only a few multiples of the collision time V" I. Physically the time

required is the time necessary for nearly all electrons to have suffered

one or more collision, mathematically it is the time t required for transient

terms proportional to exp (- V t) to become negligible. This time is really

very small in comparison with the time required to reach a steady state.

A steady state is reached when the average energy gained by an electron

from the field between successive collisions is equal to the average energy

lost by an electron to a molecule per collision. Both these energies are

small compared with the average kinetic energy per electron. The condi-

tion that the energy gained between collisions be small compared with the

average kinetic energy per electron must be met in order for our approach

to be valid (a condition met by most physical cases). The ratio of energy

loss per collision to electron kinetic energy is - m/M -10-5. Thus we

expect that a time equal to thousands of collision times may be required

before a steady state is reached. As an example suppose that Initially

a neutral gas in a fairly weak electric field is bombarded with a beam of

low energy electrons. After a few collision times the electron distribution

is changed from an approximate delta function of velocity to an approximate

delta function of energy and equations (40), (44) and (45) apply. If the

velocity dependence of V(v) happens to meet the conditions discussed

below equation (45), energy will he lost by the electrons to the field, per-

haps for a detectable length of time if the density of the gas is low ( I small).
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As the steady state is approached the distribution becomes peaked about

the origin in velocity space and the conductivity becomes positive as

seen from equation (44).

We turn now to a consideration of the contribution of higher order

terms in powers of 7 . These terms might be expected to give significant

contributions to equations (37), (40) and (44) in the case of strong fields.

In this connection we will also discuss more fully the criteria for the vali-

dity of the expansion in powers of Y used in obtaining these equations.

In principle our technique can be used to obtain the part of f(v, t)

3which is proportional to 7 ; however, it would be rather tedious. Instead

we show by a more careful consideration of equation (37) that such a calcu-

lation would be of little value because for steady state conditions the con-

tribution of the next higher order terms in powers of Y2 to either fe(v, t)

or j are of order m/M or less compared to those retained In equations

(37) and (44),

We see this in the following way: if the second term in the denomi-

nator of the exponential in equation (37) is large compared with the first

we have

M 2 •2
_ kTe (46)

0o 6(w. + )

or
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FY m
Sw (47)

2 2 2 M

where Te is the effective electron temperature obtained by setting kTe

equal to the denominator of the exponent of equation (37) and V is the approxi-

mate average magnitude of v. On the other hand, if kT ) Y2 M(oM 2 + P2

we see that y2(V) 2 ( w + 2 )-I is even smaller. The criterion for

the validity of equation (40) is, of course, that the ratio of successive terms

be less than unity. From inspection of equations (40) and (41) this criterion

is roughly

and (48)

y

comparing this with equation (47) we see that in the steady state condition

a slightly ionized gas adjusts itself automatically In such a way that the

expansion given by equation (40) is valid and the higher order corrections

to equations (37) and (44) are of order m/M or less relative to those re-

tained. Of course, for high enough field intensities kTe becomes so large

that various kinds of inelastic and ionizing collisions become frequent.
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Then our assumption that all collisions other than elastic collisions be-

tween electrons and molecules are insignificant in determining f(v, t)

breaks down. Thus the only circumstances for which terms of order Y 3

could give a significant contribution to equation (44) would be for short

times after an electric field was applied to a slightly ionized gas in which

the electrons initially had energies of the same order or less than that

gained on the average by an electron from the field between successive

collisions. For constant collision frequency and isotropic distribution

of electrons the latter energy is ( c2 + v 2 )-' y 2 m/2. Thus, it is interest-

ing to note that the criteria given by the inequalities (48) for the validity

of our expansion in powers of Y is roughly equivalent to demanding that

the average energy gained by an electron from the field between collisions

(assuming V is not a very strong function of v) be small compared with

the average kinetic energy per electron.

It is desirable to have the results for the case of non-isotropic

scattering in the center of mass system as well. The conventional result

for this case is that equation (37) and (44) apply with V replaced with ros

the collision frequency for momentum transfer. This problem is consi-

dered in the appendix. There it is shown what conditions must be met

by the part of f(v, t) proportional to Legendre Polynomials PI (Vx/v) with

Z • 2 in order to satisfy the requirements for the validity of the conventional

result. It is plausible that these conditions are met, at least for the steady

state; however, in contrast to the case of isotropic scattering, we are unable

to show rigorously that they ",.e met.
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APPENDIX

It is our purpose here to generalize to the case of non-isotropic

scattering. In this case we define a pseudo source function Sim(vj t) by

the equation

- V f(v, t) + S(v )= - Vf(V, t) +S (v, t) (49)

where I~m is the collision frequency for momentum transfer

Vm(v) = Nvf (1 -cos) (v,9)dfl . (50)

When equation (49) is used to express the right hand side of the Boltzmann

equation, equation (6), we obtain the generalized versions of equations (12),

(17) and (18). By the generalized version of an equation we will mean that

the only change from the original is that V(v) and S(v, t) are everywhere

replaced with V.(v) and Sm(v, t). The symmetry properties of S n(v, t)

can be investigated by solving equation (49) for Sm and by using equations

(25) and (27) together with the definition of V, second of equations (29).

We get

N f [ fo(v,, t)+ f(v,, t)] (v,) 4 ¢(v,,)d.Sin(v, t0 (v= Vv6.(

(51)

-Nv fo(v, t)+ fI(v, t)01 f (v,0) cosedfl
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The only agency producing asymmetries in the distribution function is the

electric field. Thus the purely anisotropic part of the distribution function

can be expanded in Legendre polynomials as follows:

QD

fl(v. t)'= • CI (v, t) PI (cos$#); cos V v/v. (52)

Now we substitute this expression into equation (51) and expand functions

of v'in powers of m/M about v with the use of equation (26). We obtain

S (v, t)~ Y fo(v, t) +Nv % C (v, t) P(OIIP(OOCS v )I
(53)

My2  *V v3 Vmfv t) + Nv 4  Pf (cos')l(1- cosl) a(v, G)df .

We now make use of the well known relation

! 1Cos40 *..F(-* m) Pm(cos*) /PI (cos)Oos m(0 )
P1  (COS) P osos ) + Z I +M (54)

where ( * - •) is the angle between the projections of y' and E in the plane

perpendicular to v. Since there is no azimuthal asymmetry in our problem,

the part of equation (54) proportional to cosm( 0 - 07) gives no contribu-

tion when equation (54) is substituted into equation (53). Thus we obtain
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S v,= 0 Vfo(v. t)+ C, (v, 0) P Cs r mv)- )+OM

(55)

in which

V (vM Nvf [F1-P• (cosG)1 a(v, 0)dO (56)

In contrast to this result we recall that the source function for the case

of isotropic scattering in the center of mass system had no zero order con-

tribution in powers of m/M arising from f 1 (v, t), the anisotropic part of the

distribution function. By our particular choice of definition for the pseudo

source function S m(v, t) we have eliminated the zero order contribution

proportional to P (coso) = cos Vs. However, one sees that if S (v, t)

had been defined by equations (49) and (50) with any other Legendre poly-

nomial P (coal) replacing cos 0 in equation (50). then the zero order

anisotropy proportional to Pj (coso*) would have been eliminated from

S (,x t). Nevertheless the choice made for the definition of Sn(y t) is

most convenient.

If we make the assumption (usually made) that the part of f(v, t)

proportional to Legendre polynomials P (cos 0) with f 2: 2 is negligible,

Si(, 0t) is sufficiently isotropic for us to proceed as in Section II. We

then get the conventional result that the steady state value of fe(v, t) is

given by the generalized version of equation (37) and the current density

by the generalized versions of equations (1) or (44). Actually all that is
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required for these results to apply is that the C (v, t) with I 2 be of

first order or higher in powers of V. When the generalized version of

equation (17) is integrated over angle to get the generalized versions of

equations (19) and (20), the C, (v, t) with I > 2 appear only in terms pro-

portional to Y 2 or m/M as a consequence of the orthoganality properti-s

of Legendre polynomials. Thus, if all C, (v, t) with I • 2 are of order

Y or higher, they contribute terms to equations (19) and (20) which are

of order Y3 and Ym/M or higher and can be neglected. We will show

now that the requirement that the C, (v, t) be of order Y or higher for

2 reduces to the requirement that( I - Vm/V•) times the approximate average

change in C, (v, t) between collisions be of order Y or higher. An equa-

tion for C2 (v, t) is obtained by substituting the value for the pseudo source

function given by equation (55) into the generalized version of equation (17).

Multiplying the equation through by P 2 (coso'), and integrating over solid

angle, one gets

C2v t) =(Vr - f e Y(t - t) e C2 (v, t')dt' + O( y 2 (57)

C2 (v,t)(~- 2 f

which can be rearranged as

CCnt)= (N- 0- )A C2(vt))+O(y2). (58)
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< A C2 (v, t) > is approximately the average change in C 2 (v, t) between

successive collisions given by

t

<Ac,(v, t)> f ehm(t- t') Ymdt' c 2 (v, t -C(v, t)

(59)

Proceeding in an analogous fashion we can get similar expressions for

the C v. t0 withi, 2. For I>2 the analogues to equations (57) and

(58) have a term going as Y3 or higher in place of the Y2 term. Thus,

in all cases the requirement that the Cf (v, t) with b7 2 be of order Y

or higher, which is necessary for the validity of the generalized ver-

sions of equations (37), (1) and (44), is seen to reduce to the requirement

that (I - Pm/V))<A C (v, t)> be of order Y or higher for all h 2.

In the fairly low energy range where one is justified in ignor-

ing inelastic processes, the DeBroigle wave of the electron can be expected

to be long compared to the range of molecular forces, in which case the

scattering will be mostly s-wave scattering. Then V = VZ Vm and

the first term on the r.h. s. of equation (58) will be small. (This would

not hold for molecules with appreciable static dipole moments.) However,

separately we expect <AC# Nv, t)O to be small, particularly for the

steady state. When a steady state is obtained, we could separate C (v, t)

into a constant part, which would contribute nothing to <ACI (v, t) >

and an oscillating part. Since the only agency tending to produce oscil-

latory motion is the electric field, we would expect that the oscillations
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would be at one or more harmonics of the field frequency and that this

part of Cf (v, t) and hence <AC1 (v t) 0 > would go as some power of Y.
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